
Chapter 1. TDR Summary

1.1 Korea-4GSR parameters

We have organized the target parameters and the overall outline. <Figure 1.1.1.1> shows the overall layout of the 4GSR. It consists of a 200 MeV injector linear accelerator, a 4 GeV booster, and a 4 GeV, 800 m storage ring, with the booster and storage ring installed in the same tunnel.

A total of 52 beamlines can be installed, and up to 60 beamlines are possible using canted insertion devices (IDs) if necessary. Out of 28 cells, one is designated for the injection area, and three are for RF installation. Excluding these four straight sections, 24 straight sections are available for the installation of insertion devices. The main parameters are presented in <Table 1.1.1.1>

An emittance of 62 pm has been achieved, and in round beam mode, the emittance can be reduced to 40 pm. The target beam current is 400 mA operation. For the injection method, we will use the conventional four-kicker system. However, to prepare for future upgrades, we will also consider the nonlinear injection kicker, which has proven its advantages at SIRIUS, through R&D. Details are described in Chapter 2.

<Figure 1.1.1.1> Layout of 4GSR, which consists of 200 MeV injector linac, 4 GeV booster and 800 m storage ring.

<Table 1.1.1.1>4GSR general parameters

Parameters	Values		
Energy / GeV	4		
Number of cells	28		
Straight sections: Number & length / m (ID straight sections, high-beta straight sections)	26 / 6.06, 2 / 5.40		
Ring circumference / m	799.297		
Natural emittance / pm rad	62		
Regular hor/ver @ coupling	58 / 6 @ 10%		
IBS (400 mA) hor/ver @ coupling	80 / 8 @ 10%		
Energy spread / %	0.126		
Bunch length mm	3.6 (without HC) / 14.4 (with HC)		

<Table 1.1.1.2> Parameters on RF cavity, injection scheme, vacuum, and magents

Parameters	Values		
RF frequency / MHz	499.593		
# cavities / total voltage	10 / 3.5 MV		
# buckets: total / gap	1,332 / 308		
Harmonic RF system	3 rd , active, NC		
Average current / mA	400		
Lifetime / h (ideal lattice, w/o bunch	7.30 (flat) / 29.22 (round)		
lengthening)	7.30 (flat) / 23.22 (fourid)		
Top up operation	Yes		
Injection scheme	4 kicker bump		
Beam pipe (in achrom.) / mm²	D: 24(H)*18(V) @ ID straight section		
Max. bending magnet field / T	2		
Max. quadrupole grad. T/m	55		
Max. sextupole strength T/m ²	1,737		
Max. octupole strength T/m ³	120,083		

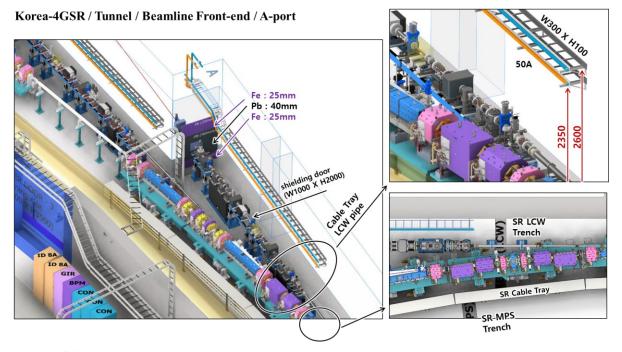
<Table 1.1.1.3> Storage ring main parameters

Parameter	Value (w/o IDs)	Value (w/ 9 IDs)	
Natural emittance	61.57 pm	52.55 pm	
Circumference	799.297 m		
Beam energy	4 GeV		
Working point v_x, v_y	68.179 /	23.260	
Natural chromaticity ξ_x, ξ_y	-112.1 / -85.3		
Chromaticity ξ_x, ξ_y (corrected)	5.8,	3.5	
Horizontal damping partition \mathcal{J}_x	1.84	1.64	
Momentum compaction α	7.8 ×	10 ⁻⁵	
Energy loss per turn U_0	1.098 MeV	1.449 MeV	
Energy spread	0.126%	0.104%	
Main RF voltage	3.080 MV	3.500 MV	
Main RF frequency	499.593 MHz	499.593 MHz	
Main RF synchronous phase (w/o harmonic cavity, w/ harmonic cavity)	159.13 deg, 156.36 deg	155.55 deg, 152.24 deg	
Harmonic number	1332		
Damping times (H / V / L)	10.55 ms/ 19.43 ms/ 16.79 ms	8.98 ms/ 14.72 ms/ 10.81 ms	
Harmonic cavity voltage	0.950 MV	1.048 MV	
Harmonic cavity frequency	1,498.78041 MHz	1,498.78041 MHz	
Harmonic cavity phase	351.70 deg	350.49 deg	
Bunch length (w/o harmonic cavity, w/ harmonic cavity)	3.6 mm, 14.4 mm	2.8 mm, 11.4 mm	
Beta function at center of ID straight β_x , β_y	6.33 m / 2.84 m		
Beta function at center of high- beta straight β_x , β_y	15.90 m / 4.45 m		

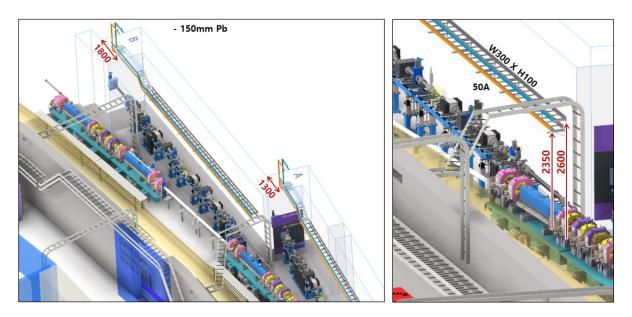
1.2 Initial 10 Beamlines parameters

The initial ten beamlines to be constructed at 4GSR are listed in <Table 1.2.1.2>. Among them, three beamlines, ① BioPharma-BioSAXS (Bio-Pharmaceutical and Bio Small-Angle X-ray Scattering), ② Material Structure Analysis, ③ Soft X-ray NanoProbe, are designated as industry-priority beamlines, focusing on high-throughput technologies required by industrial users.

The remaining seven beamlines, ④ Nanoscale Angle-Resolved Photoemission Spectroscopy (NanoARPES), ⑤ Coherent X-ray Diffraction (CoXRD), ⑥ Coherent Small-Angle X-ray Scattering (CoSAXS), ⑦ Real-Time X-ray Absorption Fine Structure (Real-Time XAFS), ⑧ Bio-Nano Crystallography (BioNC), ⑨ High Energy Microscopy (HEM), ⑩ Nano-Probe, are planned as leading-edge fundamental research beamlines. Details are described in Chapter 3.

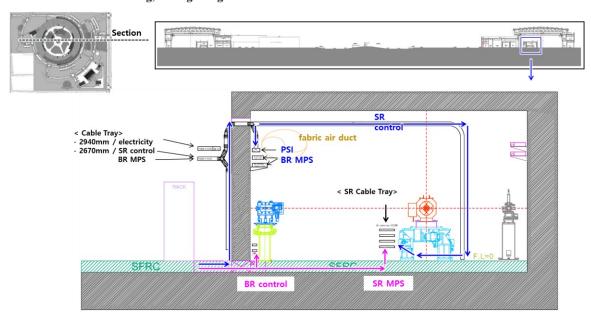

<Table 1.2.1.1> Initial beamline plan of Korea-4GSR

Beam port	Light source	Length [m]	Peak Field [T]	Period [mm]	Minimum gap [mm]
ID21	In-vacuum undulator	3.0000	1.2250	24.00	5.00
ID24	In-vacuum undulator	3.0000	0.7850	16.00	5.00
ID26-1	In-vacuum undulator 1.5000 1.2250		24.00	5.00	
	Elliptical polarized EPU78	2.0000	0.9540	78.00	15.00
ID26-2	Circular polarized EPU78		0.6020		
	Max horizontal polarized EPU78		0.7760		
ID25	Elliptical polarized EPU98		1.0100	98.00	15.00
	Circular polarized EPU98	3.6260	0.6633		
	Max horizontal polarized EPU98		0.8799		
ID03	In-vacuum undulator 3.0000 1.2270		1.2270	22.00	5.00
ID04	In-vacuum undulator	3.0000	1.0211	20.00	5.00
ID23	In-vacuum undulator	3.0000	1.2250	24.00	5.00
ID22	In-vacuum undulator	3.0000	1.0210	20.00	5.00
BM10	Center bend	Already considered			
ID10	In-vacuum undulator	3.0000	1.2253	20.00	5.00

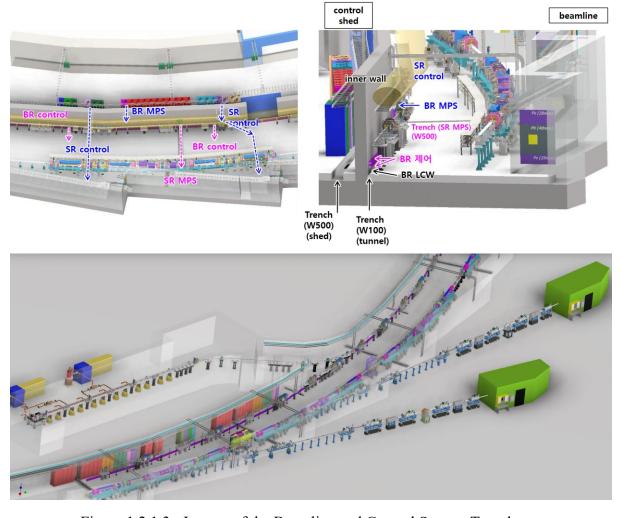

<Table 1.2.1.2> Specifications of the Initial 10 Beamlines of 4GSR

	Preliminary Feasibility Report Specifications	Detailed Design Specifications	Application	Remarks
1. BioPharma- BioSAXS (Inclustry- Priority)	Beam Energy: from 5 to 20 keV Experimental Method: Bio-SAXS	 Beam Energy: from 5 to 20 keV (Same) Experimental Method: Solution SAXS Resolution: from 8 to 4000 Å (SAXS) * △E/E < 2 × 10⁻⁴ Light Source: NU24 	Віо	 Optimized from 8 to 25 keV SDD (Sample-to-Detector Distance) secured up to 6 m Automation system implemented
2. Material Structure Analysis (Inclustry- Priority)	Beam Energy: from 5 to 40 keV Experimental Method: XRD (Powder XRD), XAFS	 Beam Energy: from 5 to 40 keV (Same) Experimental Method: Powder XRD, XAFS Resolution: △E/E < 2 × 10⁻⁴ Light Source: NU24 	Material, Energy	Implementation of HRPD and XAFS Experimental Methods
3. Soft X-ray NanoProbe (Industry- Priority)	 Beam Energy: from 0.1 to 5 keV Beam Size: Must be ≤1 µm Experimental Method: XPS, XAS 	 Beam Energy: from 0.1 to 5 keV (Same) Beam Size: from 100 nm to 10 µm Resolution: △E/E < 1.5 × 10⁻⁴ @ 400 eV, 4 keV Experimental Method: XPS, XAS Light Source: EPU78 + IVU24 	Semiconductor, Material	 EPU + MU Tandem → from 0.1 to 5 keV Designed with two branch beamlines Beam Size: * ≤100 nm (Soft X-ray) * ≤10 μm (Tender X-ray)
4. NanoARPES	Beam Energy: from 0.1 to 2 keV Beam Size: <100(H) × 100(V) nm² Spatial Resolution: ≤30 nm Experimental Method: Nano-ARPES	 Beam Energy: from 0.05 to 2 keV (Range Satisfied) Beam Size: from 100 nm to 10 μm Spatial Resolution: ≤100 nm Resolution: △E/E < 10⁻⁴ Experimental Method: ARPES Light Source: EPU98 	Semiconductor, Material	• Optimized from 50 to 200 eV • Designed with two branch beamlines • Beam Size: * ≤100 nm (NanoARPES) * ≤10 μm (MicroARPES)
5. CoXRD	• Beam Energy: from 3 to 30 keV • Beam Size: ≤1 µm • Experimental Method: XRD, CDI	 Beam Energy: from 3 to 30 keV (Same) Beam Size: 1.5 µm Experimental Method: XRD, CDI Light Source: NU22 	Semiconductor, Material, Geology, Chemistry	Micrometer beam Focusing

6. CoSAXS	Beam Energy: from 4 to 40 keV Experimental Method: SAXS/WAXS (Induding GI Method), XPCS	 Beam Energy. from 8 to 30 keV (Satisfies Experimental Methods) Beam Size: * <5 µm (XPCS) * <50 µm (SAXS/WAXS) Resolution: △E/E < 1 × 10⁻⁴ Experimental Method: SAXS/WAXS (Induding GI Method), XPCS Light Source: MU20 	Material, Chemistry	Securing Coherent Beam. (Wave front preserve)
7. Real-Time XAFS	Beam Energy: from 5 to 40 keV Experimental Method: XAFS	 Beam Energy: from 4 to 40 keV (Range Satisfied) Beam Size: <100 μm Resolution: ΔΕ/Ε < 2 × 10⁻⁴ Experimental Method: XAFS Light Source: IVU24 	Energy, Environment, Material, Geology	Consideration of XES-Based Real-Time X-ray Absorption Spectroscopy Experimental System
8. BioNC	 Beam Energy: from 5 to 20 keV Resolution: ≤1 Å Experimental Method: MX 	 Beam Energy: from 5 to 20 keV (Same) Beam Size: from 1 × 1 to 13 × 13 µm² Resolution: from 0.7 to 3.5 Å Experimental Method: MX Light Source: MU20 	Bio	Optimized from 8 to 25 keV NanoMX Supports Drug Development
9. HEM	 Beam Energy: from 5 to 100 keV Resolution: 0.1 µm (at 100 m reference) Experimental Method: Projection Imaging 	 Beam Energy: from 5 to 100 keV (Same) Resolution: from 0.3 to 0.5 µm Experimental Method: Projection Imaging Light Source: Centerbend Sample Position: 100 m (Experimental Hutch: 120 m) 	Material, Energy, Bio	Bending Magnet Excludes Near-Distance Hutch (Uses White Light)
10. Nano-Probe	Beam Energy: from 5 to 25 keV Experimental Method: Ptychography, XRS, XRF	Beam Energy: from 5 to 25 keV (Same) Beam Size: ≤50 nm @ 10 keV Resolution: △E/E < 1.5 × 10 ⁻⁴ Experimental Method: Ptychography, XRF Light Source: IVU24	Semiconductor, Material, Energy, Environment, Chemistry	 Pursues Nano Beam Focusing Designed for 5f-Block Elements and RI Materials → Experiments Possible After Radiation Safety Protocol Preparation



Korea-4GSR / Tunnel / Beamline Front-end / B-port



<Figure 1.2.1.1> Korea-4GSR/Tunnel/Beamline Front-end.

Korea-4GSR / Booster ring, Storage ring cable

<Figure 1.2.1.2> Korea-4GSR/Booster ring, Storage ring cable.

<Figure 1.2.1.3> Layout of the Beamline and Control System Trenches.