Design Strategies and Progress of Coherent Beamlines at Korea-4GSR for Advanced Science

- ID03 CoXRD
- ID04 CoSAXS
- ID10 Hard X-ray Nanoprobe

Jaeyong Shin, Wonhyuk Jo, Daseul Ham (Korea-4GSR)

Jun Lim, Jehan Kim, Su-Yong Lee(PLS-II)

Overview

Coherent beamlines of Korea-4GSR

Beamlines of 1st phase

- 1 BioPharma-BioSAXS
- 2 Material Structure Analysis
- 3 Soft X-ray Nano-probe
- 4 Nanoscale Angle-resolved Photoemission Spectroscopy
- **(5)** Coherent X-ray Diffraction
- 6 Coherent Small-angle X-ray Scattering
- (7) Real-time X-ray Absorption Fine Structure
- 8 Bio Nano crystallography
- High Energy Microscopy

10 Nanoprobe

ID03: CoXRD (70 m)

Electron Beam Energy: 4 GeV (800 m Circular Orbit)

Electron Beam Emittance: 62 pm·rad (Flat beam)

Beamlines: Over 40 (Initially 10)

Acceleration Method: Electron Gun, Injector Linac, 4 GeV Booster

Storage Ring: MBA-Based 7BA Magnet Configuration

Features of Coherent beamline

4GSR Coherent beamlines provide a variety of capabilities within "User's sweet spot"

Coherent X-ray beam (5-25 keV)

Coherent scattering & imaging

- 3D quantitative imaging with highest spatial resolution
- Photon correlation spectroscopy probe dynamics from sub-µsec onward

Small-beam diffraction & spectroscopy

- Chemical and structural Nanoscale imaging
- High sensitivity for dilute & heterogeneous sample

Multi-modal characterization

- Provide a variety of simultaneous probes in a fixed setup
- Provide multimodal analysis to understanding to complex and heterogeneous systems

Beamline design goal and strategy of Coherent beamlines

High-Fidelity Beamline Design for Advanced X-ray Science

: Optimized for High stability, Wavefront preservation, and Future Scalability

1. Stable Beam

- < 10 % rule (Beam position and intensity)
 - → Using horizontal deflection optics
 - → Apply to stable HVAC(0.1 °C) and low vibration
- (Slow) Beam position feedback

2. Wavefront preservation

- · High precision optics
 - → Ultra-low roughness and slope error mirror
 - → Polishing Diamond CRL
 - → Clean surface and crystal attenuator(Silicon/Dia.)
- Simple is BEST

(Configure with as few optics as possible)

- $\leftrightarrow \text{Secondary source}$
- (For scanning imaging, Nanoprobe)
- · Diamond diagnostics
 - → Clean and low roughness surface
- UHV Fast close shutter system
 - → Few vacuum window

3. Scalability

- Large experimental Hutch (or two experimental Hutch)
 - → New experimental method and instrument test space
- · Long working distance
 - → In-situ experiments and other instrument assessments
- Domestically produced equipment
 - → High speed nanoscan stage with wide scan range
 - → End-station chamber etc.

リゼピイで JCE INSTITUT

ID04 CoSAXS

Beamline layout of CoSAXS

R: 3 mm, Aperture: 2.4 mm R: 350 um, Aperture: 800 µm

Techniques

Sample

(GI)XPCS, μ(GI)SAXS/WAXS

Detector

71 m

Beamline layout of CoSAXS

Source	In-vacuum Undulator (3 m)				
Photon energy	5 - 30 keV				
Beam size	10 x 3 μm² for uSAXS 1 - 10 μm for XPCS				
Resolution	$Q_{min} = 0.01 \text{ Å}^{-1} / Q_{max} = 2.70 \text{ Å}^{-1}$				
Coh. Beam flux	10 ¹¹ - 10 ¹² photons/s @ Sample				
Techniques	(GI)XPCS, μ(GI)SAXS/WAXS				

POHANG ACCELERATOR LABORATORY

Beamline layout of CoSAXS

KOREA BASIC SCIENCE INSTITUTE

Main design criteria: Signal to noise ratio (SNR) and speckle contrast

SNR =
$$\beta \overline{k} \sqrt{N_f N_p} > 5$$

$$\beta = \beta(d_b, l_c, d, L, P, q)$$

 β : speckle contrast

k: intensity (photons/frame) Sample & Source flux

 N_f : number of frames detector

 N_n : number of pixels detector

 d_h : coherent beam size at the sample Beamline Config.

 l_c : longitudinal coherence length

d: sample thickness Sample

P: detector pixel size Exp. Config. q: wave vector

L: sample to detector distance Beamline Config.

Source (DCM)

SNR higher than 5 is preferred

Higher β is crucial key for the XPCS beamline

Example

When \overline{k} = 10^{-3} photons/frame and $N_p=10^5$ (0.1 Megapixel), and detector frame rate = 500 Hz

SNR = 5				
Contrast	0.01	0.1	0.3	
Needed number of frames	2500000	25000	2777	
Acquisition time [s]	5000 s	50 s	5.55 s	

Coherent beam size and the detector distance are the most important!

For the X-ray sensitive sample e.g., protein or polymer, larger beam size and longer detector distance is required

Primary technique - X-ray Photon Correlation Spectroscopy

- The speckle pattern is from the spatial arrangement of the scatters.
- Speckle-based technique to study dynamics in disordered systems
- Temporal changes are captured via speckle evolution
- Intensity correlation function reveals **dynamic behavior**
- Spatiotemporal resolution depends on coherent X-ray beam properties and detector readout speed

- Protein (Ferritin, egg yolk)
- WAXS XPCS
 - Amorphous Ice system (H2O)
 - Electrolyte (Lithium-ion battery)
 - Charge density wave (LaSrNiO)

Delay time

Intensity correlation function

$$g^{(2)}(q,\tau) = \frac{\langle I(q,t)I(q,t+\tau)\rangle}{\langle I(q,t)\rangle^2}$$
$$= 1 + \beta |f(q,\tau)|^2$$
$$= 1 + \beta exp(-2\Gamma(q)t)$$

Target science of CoSAXS beamline

Target science of CoSAXS beamline

Optical Hutch

- Hutch dimension
 - $: 10.0 \times 3.0 \times 3.0 (L \times W \times H)$
- Main components
 - : High Heat Load Mirrors
 - : Horizontal DCM
 - : Screen monitors
 - : DBPM

Experimental Hutch

- Hutch dimension
 - : 16.0 x 9.2 x 4.0 (L x W x H)
- Sample position
 - : 63.0 m
- Sample to detector
 - : 8 m (Adjustable 0 30 °); 2 m (On axis)
- · Beam path aperture
 - : 200 mm
- Purpose
 - : XPCS, SAXS/WAXS

Endstation - Experimental hutch (CoSAXS)

Microfluidic system

- Enables automatic sample refreshing
- Supports in-situ measurements during sample synthesis
- Requires less sample volume, ideal for limited or precious materials
- Commonly used in SAXS measurements for biological and polymer systems

XPCS at Microfluidic system

- / Demonstrated XPCS measurements in a microfluidic setup
- Sample flow influences the observed dynamics
- With high temporal resolution and proper data analysis, it is possible to decouple intrinsic sample dynamics from flow-induced motion

POHANG ACCELERATOR LARORATORY

Endstation - Experimental hutch (CoSAXS)

Capillary sample holder

Piezo-driven translation scanner at MID (European XFEL)

Example for a sample chamber Sample holder from P10 (PETRA III)

Capillary Measurement Strategy

- X-ray sensitive samples must be translated during exposure to prevent radiation damage
- A continuous translation is required, especially for long working distances (\sim 10 cm, $v_{max} = 50$ mm/s)
- A piezo-driven translation scanner will be implemented for precise and stable motion

In-situ vacuum chamber with temp. control system

- A compact vacuum chamber with minimal windows along the beam path reduces scattering and is ideal for photon-hungry experiments
- A copper capillary holder combined with a Feltie-based temp. control system enables in-situ experiments within moderate temperature ranges

POHANG ACCELERATOR LABORATORY

ID03 CoXRD

Overview CoXRD Beamline

Overview CoXRD Beamline

Schematic and specification of beamline

: 3D Strain and structure analysis with various environment

Source	In-vacuum Undulator (3 m)			
Photon energy	5 - 25 keV			
Beam size	< 1 - 5 um @ Sample			
Coh. Beam flux	10 ¹¹ - 10 ¹² photons/s @ Sample			
Techniques	Bragg - CDI, μXRD			

☐ Goniometer

- → 6-Axis Kappa Diffractometer
- → Huber 6-circle
 Diffractometer

Sample

 $(73.5 \, \text{m})$

DCM M1

 $(66 \, \text{m})$

 $(60 \, m)$

Optical hutch

Detector

- \rightarrow EIGER2 X 4M (75 x 75 μ m²) for BCDI
- \rightarrow LAMBDA 250k (55 x 55 μ m²) for μ XRD
- \rightarrow 7ch SDD for XFM

Experimental hutch

IVU

Primary technique - Bragg Coherent X-ray Diffraction Imaging (BCDI)

- → Energy material (NMC, NRO, etc.)
- → Micro-particle (Catalyst, etc.)
- Sample environment (Compact chamber)
 - → Temperature(< 1000 °C)
 - → Voltage(< 20 V)
 - → Liquid system
 - → Gas system
 - → Photocatalytic chamber

[Battery]

Defect in Na-Ion batteries

Advanced Energy Materials 13.21 (2023): 2203654.

[Catalyst]

ACS nano 18.30 (2024): 19608-19617.

Chiral NP

(a)

{001} (013) (034) {011}

CrystEngComm 24.7 (2022): 1334-1343

Endstation - Experimental hutch (CoXRD)

EH1

- Hutch dimension
 - $: 9.2 \times 5 \times 5 \text{ m}^3 (L \times W \times H)$
- Sample position
 - : 73.5 m
- Maximum sample to detector
 - : 3 m (0 90 °)
- · Beam path aperture
 - : 150 mm
- Purpose
 - : Bragg CDI and uXRD

Optical hutch: Simple is best!

Endstation - Experimental hutch (CoXRD)

Endstation compact chamber

- → Thermal button cell and gas system (< 1000 °C)
- → Multimodal(V-I) Chamber
- → Photocatalytic
- → Liquid cell
- → Photocatalytic chamber

ID10 Nanoprobe

Overview Hard X-ray Nanoprobe Beamline

Schematic and specification of beamline

: Functional 3D nano-scale imaging and Quantitative analysis

- 2. SSA gap size for $\mu = 0.8$
- 3. KB mirror acceptance
- 4. Monobeam
- 5. Polarization effect from HDCM

μ: Degree of coherence

Light Source	IVU (L=3.0m)		
Photon energy	5 - 25 keV		
Beam size	100 - 50 nm @ sample(Focusing) > 10 um @ sample(Unfocusing)		
Working distance	50 mm (KB mirror) 100 mm (ZP or DCRL)		
Spatial resolution	< 50 nm (Scanning) < 10 nm (Imaging)		
Coh. photon flux	10 ¹⁰ -10 ¹² phs/s @ Sample		

(0 m)

Primary technique - Multimodal analysis with 3D imaging

Target sample

- \rightarrow Semiconductor (CPU, HBM, etc)
- → Energy material (NMC, NRO, etc)
- → Quantum material (Vanadium Kagome metal, CDW, etc)
- → Micro/Nano-particle (Mesoporous silica, Metallic glass-NiB, etc)

□ Primary method

- \rightarrow Ptychography with Nano-XFM
- → Tomography

Auxiliary method

- → Diffraction mapping
- \rightarrow Spectro-ptychography; Nano-XANES
- → SAXS/WAXS; Nanoparticle

POHANG ACCELERATOR LABORATORY

Multimodal imaging (PLS-II 9C)

Tomography (PLS-II 9C)

ACS nano 17.22 (2023): 22488-22498.

Submitted

Near-field ptychography

Cement and Concrete Research 185 (2024): 107622.

X-ray Diffraction Mapping

ACS Applied Materials & Interfaces 15.2 (2023): 3119-3130.

Imaging and Scanning Method

Imaging and Scanning Method

Imaging method

Nature 634, 124–138 (2024)

- Non-destructive whole brain mapping of small bugs and exploring neuron connectivity
 - Non-destructive whole bio-cell imaging

Nature 632.8023 (2024): 81-88.

• > 3 nm resolution

POHANG ACCELERATOR LABORATORY

Imaging method for thick sample

Imaging method

Tele-ptychography with unfocused beam Thick > 100 um Detector Slit Object **▲** Analyzer **Thickness** Optics Express 24.6 (2016): 6441-6450.

Total imaging time of copper features in silicon

Applied Crystallography 54.2 (2021): 386-401.

$T_{\rm p} = \bar{n}_{\rm pixel}/(B\lambda^2)$. $T_{\rm tot} = T_{\rm p}N^2 = \frac{\bar{n}_{\rm pixel}}{B\lambda^2}N^2 = \frac{4\bar{n}_{\rm pixel}}{B\lambda^2}\frac{t^2}{\delta^2}$

Near-field ptychography Detector **KB** mirror

Sample

Ptychography

Multi-slice approach

Optics Express 31.10 (2023): 15791-15809.1X

Thin

< 100 um

Experimental hutch and operation mode

EH1(Design in progress)

- Hutch dimension
 - : $10 \times 6 \times 3.5 \text{ m}^3(\text{L} \times \text{W} \times \text{H})$
- Sample position
 - : 115 m
- Maximum sample to detector
 - : 35 m (On-axis)
- · Beam path aperture
 - : 300 mm (30 nm resolution)
- Purpose
 - : (Tele-)Ptychography with unfocused beam
- : Test space for new experimental instrument

EH2

- · Hutch dimension
 - : $20 \times 6 \times 3.5 \text{ m}^3(\text{L} \times \text{W} \times \text{H})$
- Sample position
 - : 135 m and 150 m
- · Sample to detector
 - : 20 m (12°)
 - : 18 m; 0.5 2.0 m (On-axis)
- · Beam path aperture
 - : 200 mm (< 10 nm resolution)
- Purpose
 - : Multimodal imaging using nanobeam(Primary)
 - $: {\sf SAXS}, {\sf WAXS}, {\sf XDM}, {\sf Nano-XANES},$
 - Spectro-ptychography(Auxiliary)

Experimental hutch and operation mode

- No pilling to stone ground
 - → 1 m Concrete slab
- Isolate the storage ring slab from the experimental hutch
- House in house structure
 - → Satellite building temp. ± 0.5 °C
- Concrete hutch
 - → Low vibration, stable temperature

Hybrid approach for hutch cooling system (On going development)

Strategies for high thermal stability in exp. hutch

Heating, Ventilating, and Air Conditioning system

- ± < 0.1 °C / h
- 20 x 6 x 3.5 m³ (L x W x H)

Air curtain or enclosure for exp. equipments

- ± 0.02 °C / h
- 2 x 1.5 x 2 m³ (L x W x H)

Temperature derivation ± 0.02 °C / h

HVAC system of PAL-EUV tunnel

Hybrid approach for hutch cooling system (On going development)

Strategies for high thermal stability in exp. hutch

Heating, Ventilating, and Air Conditioning system

- ± < 0.1 °C / h
- 20 x 6 x 3.5 m³ (L x W x H)

Air curtain or enclosure for exp. equipments

- ± 0.02 °C / h
- 2 x 1.5 x 2 m³ (L x W x H)

Temperature derivation ± 0.02 °C / h

♦ HVAC system of PAL-EUV tunnel

Overview of EH2 - Beam path and detector stage stage

Motorized scintillator and magnification change camera system (PLS-II 6C)

Microscopy 70.5 (2021): 469-475.

- · Working distance
 - : 50 mm (KB mirror)
- Detector
 - : CITIUS 840 k. SDD 7 ch
- Sample to detector
 - : 0.5 m 2.0 m (On rail, up to 20₀)
- : 0.5 m 4.2 m (On axis)
- : 0.5 m 5.2 m (Up to 45₀)
- Macro-nanoscale multiplexing 3D imaging
 - >100 um FOV, < 30 nm spatial resolution
- · High temperature env.
- > 600 °C (Nano-chip mems)
- · In-situ/operando multiplexing imaging < 10 min time step
- Thermal stability: ± 0.02 °C / h

Endstation - KB mirror design (Design in progress)

- · Working distance
 - : 50 mm (KB mirror); Sample stage table size: 75 mm
- Mirror length
 - : 300 mm(V) x 100 mm(H)
- Laser interferometer system for verifying angular motion
- Helium purging / thin wall
- Limit DOF for high stability
 - → Single coating(Pt)

Endstation - Sample stage

- Coarse xyz → Travel range(X x Y x Z): 15 x 30 x 300 mm³
- Piezo motor yz (Domestic prototype)
 - → Travel range : 15 um x 15 um
 - → Resonant frequency : > 3kHz; Position streaming rate: 25 kHz
- Piezo motor yz (Prototype by SmarAct)
 - → Travel range : 15 um x 15 um
 - → Resonant frequency : > 1kHz; Position streaming rate: 39 kHz
- Rotation motor: Air bearing rotation motor with slip ring
 - **Sample position reader**: Laser interferometer(Design in Progress)

Endstation - High speed precision nano-scanning stage system

• Fast precision nanoscan stage

② Interferometers

③ Controller

- · Det. Frame rate
- : > 1kHz (Target > 5 kHz)
- Table size
 - : 50 x 50 mm²
- · Close-loop freq.
 - : 10 kHz (Target 20 kHz)
- FOV
 - : 15 um (Target 50 um)
- Precision
 - : 1 nm
- · Load capacity
 - : 100 g

Ethernet

Endstation - Detailed component list of sample stage

Mini-in situ cell (< 100g)
 Gas supply system

ARAYS

Sample stage

Mass spectrometer

Temperature-controller box and lapton mass-flow controller m

J. Synchrotron Rad. (2019). 26, 1769-1781

https://denssolutions.com/products/wildfire/

FOV: 25 um; Membrane window thickness: 30 nm(SIN)

Endstation - Playground for frontier scientist

- Working distance
 - : 100 mm (ZP or DCRL), NAN (Parallel beam)
- Detector
 - : EIGER 4M. SDD 7 ch
- Sample to detector
- : 20 m (12 °) / 11.5 m (20°) / 7.5 m (30°) / 5.5 m (45°) / 18 m (On-axis)
- Macro-nanoscale multiplexing 3D imaging
 100 um FOV, < 30 nm spatial resolution
- · Temperature env.
 - > 700 °C or < 100 K
- In-situ/operando multiplexing imaging < 10 min time step

Portable chamber

♦ Air bearing-supported granite stages

- Provides custom chamber compatibility
 - : 20 Plug and play motor channel
 - : Installable portable chambers
 - : Extra air bearing granite support

SP-8 BL29XU

APS Nanoprobe

Endstation - Playground for frontier scientist

- · Working distance
 - : 100 mm (ZP or DCRL), NAN (Parallel beam)
- Detector
 - : EIGER 4M. SDD 7 ch
- Sample to detector
 - : 20 m (12 °) / 11.5 m (20°) / 7.5 m (30°) / 5.5 m (45°) / 18 m (On-axis)
- Macro-nanoscale multiplexing 3D imaging > 100 um FOV, < 30 nm spatial resolution
- Temperature env.
 - > 700 °C or < 100 K
- In-situ/operando multiplexing imaging < 10 min time step

- Circular polarization beam
 - → Dichroic diffraction exp.
- Components:
 - 2 Circle stage + linear stage + Point detector + Diamond crystal
- Diamond thickness
 - : 0.2 mm / 0.5 mm / 1.0 mm

Cryosteam (PAL-XFEL XSS Hutch)

- Low temperature environment
- LN2 Cryostat
- < 100 K

Imaging scale of 4GSR beamlines

♦ Korea-4GSR

- We will provide an imaging range that complements to Electron microscopy
- An imaging range similar to that of overseas synchrotrons
- However, there are some missing areas, which can be addressed according to user's demand by constructing additional beamlines in next phase

Acknowledgement

4GSR Beamline science Team

Dr. Kim ki-jeongDeputy director

Dr. Shin Jae-yong Imaging science group Hard X-ray nanoprobe

Dr. Hwang In-hui X-ray science group Real-time XAFS

Ham Da-seul
Imaging science group
CoXRD beamline
HANG ACCELERATOR LABORATORY

Dr. Jo Won-hyuk X-ray science group CoSAXS

PAL Utilities & Safety Team

Choi Young-ho Team leader HVAC system

Choi Min-cheol HVAC system

Advisor Korea Synchrotron User's Associate Hyunchul Kang(Chosun University) Moonjeong Park(POSTECH) Seohyoung Chang(Chong-ang University) Machine Advisory Committee Yong Chu (NSL S-II)

Supplementary

Beamline diagnostic and alignment strategy

Beamline diagnostic strategy specification

- Diagnostics before and after optics
 - → Automatic(Macro-based) alignment
- Retractable imager(Domestic)
- Diamond BPM(SYDOR)
 - → Wavefront preservation
- Angular resolution
 - → 100 300 nrad(Nanoprobe: 50 nrad)
 - \rightarrow 10% rule

White beam alignment

: Countermeasures for high heat loads

- Close photon shutter upstream of the first optics
- White beam imager to find the on-axis beam
- Ex.) PLS-II 3C BL

Beamline diagnostic and alignment strategy

Example: Hard X-ray Nanoprobe

Diamond White BPM(SYDOR)

- Up to 50 W(absorption)
- Resolution: Beam size 0.1%

WB Diamond screen(under develop)

- Dia. thickness: 50 100 um
- Resolution: 10 100 um

|Pink/Mono-beam Diamond/YAG screen(PLS-II 7C, PAL-XFEL)

Synchrotron Radiation 24.6 (2017): 1276-1282.

- Pink: CVD diamond 50 200 um
- Mono: Boron doped Diamond 50 um, YAG crystal
- Resolution: up to microscopy(1 10 um)
- Retractable(In/out screen)

Beamline diagnostic and alignment strategy

Example: Hard X-ray Nanoprobe

Beamline diagnostic strategy/specification

- Diagnostics before and after optics
 - → Automatic(Macro-based) alignment
- Retractable imager(Domestic)Diamond BPM(SYDOR)
 - → Wavefront preservation
- Angular resolution
 - → 100 300 nrad(Nanoprobe: 50 nrad)
 - \rightarrow 10% rule

White beam alignment

: Countermeasures for high heat loads

- Close photon shutter upstream of the first optics
- White beam imager to find the on-axis beam
- Ex.) PLS-II 3C BL

Screen2

Compare vibration level with other SR facility

Vibration source and propagation

1 - 30 Hz

Overview of vibration amplitude (RMS, 1-100 Hz)

Facility name	APS	BNL	SPRING 8	SSRF	IHEP	PLS-II 9C/2D	4GSR
Day rms (nm)	11.0	135.3	2.5	444.0	9.0	15.9 / 85.49* 15.4 / 34.39*	70 nm (1 Hz)** 11 nm (2 Hz)
Night rms (nm)	9.8	29.1	1.8	102.0	8.1		

Compare vibration level with other SR facility

♦ Vibration source and propagation

Overview of vibration amplitude (RMS, 1-100 Hz)

♦ Vibration comparison of SR facility

Facility name APS BNL SPRING 8 SSRF IHEP PLS-II 9C/2D 4GSR Day rms (nm) 11.0 135.3 2.5 444.0 9.0 15.9 / 85.49* 70 nm (1 Hz)** 15.4 / 34.39* 11 nm (2 Hz) Night rms (nm) 9.8 29.1 1.8 102.0 8.1