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 Beamline design and specifications

 Science examples from early experiments
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SPC Group Beamlines: 20-BM, 9-BM, and 25-ID-C,D



APS BEAMLINES
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20-BM / 20-ID

New 25-ID!



Probing electronic and atomic environment of atoms

 Scan x-ray energy through absorption 
edge recording absorption or 
fluorescence (XAS) or partial 
fluorescence (HERFD)

 Set the x-ray energy above the 
absorption edge recording fluorescent 
x-ray energy (XES)

 Scan x-ray energy far above 
absorption edge recording x-rays with 
energy loss from interaction with core 
electrons (XRS)

Combined with microprobe resolution 
and XRF mapping

The future will bring more image 
processing

SPECTROSCOPY MEASUREMENTS



20-BM X-RAY ABSORPTION SPECTROSCOPY
Highly productive XAS Beamline
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9-BM IN-SITU XAS BEAMLINE 
Fast scanning, wide energy range, In-situ
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S-25 BASIC OPTICAL LAYOUT
Horizontal deflecting mirrors to separate two beamlines

Microprobe branch: Two 
mirrors at 2.5 mrad, 2nd

bendable

LERIX branch: bendable 
mirror at 2 mrad

Small offset double-
crystal/double-multilayer 
monochromators: 
4-40 (32) keV with Si(111)
5-20 keV with multilayers



MONOCHROMATORS

 Standard vertical deflection double crystal LN2 cooled

 Interferometers to monitor/correct crystal alignment

 Si(111) for entire energy range

 Small (10 mm) offset allows for multilayer

 Multilayers
– 2 ML’s (d=24 and 48 Å) to cover 5-21 keV
– Accessed by small (~1 mm) vertical motion. 

 Secondary mono Si (220 or 311) for higher energy 
resolution e.g. LERIX

Located in 25-ID-B



MONOCHROMATORS
Located in 25-ID-B

 Multilayers enable non-resonant applications with much higher flux



SPECTROSCOPY GROUP 
S-25 Advanced Spectroscopy
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Source 25-ID-C/D

Monochromator
Si(111),

2nd Si(220)
Multilayer

Energy Range 4-40/32 keV 5-20 keV

Resolution 
(DE/E)

1.4 x 10-4
0.03

Flux (photons/sec) 1 x 1014 1x1015

Beam Size
Focused

8 x 8 m

Unfocused 0.5 x 0.5 mm



KB mirrors
SamplePolychromator 

Area detector

Incident X-rays 
from DMM 
(3% BW)

DXAS setup

DXAS results

DISPERSIVE XAS DEMONSTRATION

 DXAS, as a single-shot technique, 
offers significant advantages for XAS 
mapping and time-resolved 
measurements. 

 Initial spectra measured on standard 
references samples replicate those from 
a DCM

 Combined with fly scanning of the 
sample stage to achieve rapid 2D 
XANES mapping capabilities, 
particularly for in situ and in operando 
measurements.

Prototype success-fully commissioned

https://doi.org/10.1107/S1600577525004953.



DISPERSIVE XANES MAPPING
Spatial maps of absorption and edge-shift derived from spatially 
resolved Dispersive XAS on a MnxNiyOz laminate.
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HERFD AT S-25

 Range of Si crystals available:  Si(111), (100), (110), (211), (311), (773), (911)

 Common edges: Cr, Mn, Fe, Co, Ni, Cu, Zn, As, W, Au, Hg, Pb, U, Ce
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Three crystal spectrometer commissioning

sample



HERFD EXAMPLES AT S-25

 Absorption edge features become more pronounced

 Sample differences are more apparent

From thin films, bulk foils to dilute U-oxides
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ZnO film U-oxidesAu foil



Probing soft x-ray transitions with hard x-rays

 Low energy electron transitions with hard x-rays
– Transitions from core shells of light elements
– Transitions from higher shells of heavier elements

 Eliminates several complications of soft x-ray absorption
– Hard x-rays are more easily combined with complex 

sample environments such as in-situ, in-operando, high 
pressure (diamond anvil), and liquid cells

– Bulk sensitive (hard x-rays)
– Free of self absorption (non-resonant)

 Sensitive to non-dipolar transitions
– Momentum transfer dependent, can be minimized or 

enhanced
– Access aspects of electronic structure unavailable in XAS

X-RAY RAMAN SCATTERING (XRS)



PROOF OF PRINCIPLE XRS DESIGN 
S-25 testing XRS design using half-meter analyzers

195 mm

Sample

Detector
0.5-m Rowland Circle

Si (211) optic 
(755) reflection

θB = 80o

𝛼 = 10o

θM = 90o

E0 = 11534 eV



PROOF OF PRINCIPLE XRS DESIGN 
S-25 testing XRS design using half-meter analyzers



R&D ASYMMETRON FOR XRS AND HERFD

 Conductivity of Sodium Borates (B10 and B12) a promising class of solid-state electrolytes. 

 X-ray Raman Scattering of Boron showing distinct chemical information for B10, B12 and mixture.

 Detector image of sample in pouch showing signal separation 

Single Optic used for 15 emission lines from 5 to 14 KeV
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L. Duchêne et al. Chem. Commun., 53 (30), 4195-4198 
(2017)



X-RAY EMISSION SPECTROSCOPY

 Collection time from 30 sec to a few minutes

 Multilayer Monochromator after APS-U will 
allow sub-second integration time: mapping

Sensitive to spin state, valence, ligands



X-RAY EMISSION SPECTROSCOPY

 Collection time from 30 sec to a few minutes

 Multilayer Monochromator after APS-U will 
allow sub-second integration time: mapping

Sensitive to spin state, valence, ligands

Example: distinguishing Ni and NiCl2 in a 
battery electrode
Bowden et al, J. Power Sources 247, 517-526 (2014)



SPECTROMETER FOR MULTI-ELEMENT XES

 Simultaneous XES spectra from 
nickel/manganese/cobalt on alumina cathode

 Simultaneous measurement

 Incident x-ray energy 8400 eV

Large area detectors enable multiple element non-resonant XES
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NiMn Co



Extremely high-resolution SR-µXRF mapping of 
arsenian pyrite reveals that bonanza-style gold 
mineralization was caused by gold flocculation 
from electron transfer near arsenic-rich bands.

The distribution of 
electrum  (Au, ■ + 
Ag, ■) on the 
edges of corroded 
pyrite grains (Fe, 
■) with As 
banding (As, ■) as 
fine as <2 µm 
(single pixel 
thickness!)

Microscopic metallic gold grain 
(2 pixels wide, ■)

within the As band (As, ■) 
on the edge of a pyrite grain (Fe, ■). 

µXANES spectrum 
collected in situ for 4 
µm microscopic gold

Microscopic gold within 
arsenian pyrite growth zone is 
metallic Au0 and not lattice 
bound Au+1

XRF data analysis in Peakaboo (https://peakaboo.org) 
Beam spot size: <2 µm x <2 µm
Energy: 26 keV

500 µm x 500 µm (50,451 pixels)

400 µm x 400 µm (40,401 pixels)

Au

BONANZA GOLD MECHANISM
Microprobe XRF and Spectroscopy

Dr. Neil R. Banerjee, P.Geo.
Dr. Lisa L. Van Loon, C.Chem.



DEVELOPMENTS TOWARD LARGE MAPPING

 Fly scanning sample positioner 
– 4 hour measurement using weak Fe-57 

source with 18 minutes (7.5%) 
overhead

 Easy/rapid and reliable beam size 
adjustment using Be lenses
– Initial measurements made at 20-ID

Fly scanning sample positioner and variable focus
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30mm x 30mm
21x21 points
30sec/point



7 Pt atoms / nm2

https://doi.org/10.1103/PhysRevLett.128.206801

GRAZING INCIDENCE PT EXAFS

 Oxide supported noble metal 
nanoparticles are widely used as 
heterogeneous catalysts; playing an 
important role for the societal shift from a 
fossil-fuel to renewable energy sources.

 Studies of highly diluted monolayer and 
single atom catalyst are difficult, but 
necessary with catalyst development at 
the atomic-scale. 

 Initial measurements show full EXAFS 
scans can be used to determine interfacial 
Pt-O bond

Pt monolayer on SrTiO3 (001) substrate



https://doi.org/10.48550/arXiv.2504.17124

AI DRIVEN WORKFLOW FOR DYNAMIC 
SPECTROSCOPY
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https://doi.org/10.48550/arXiv.2504.17124

AI DRIVEN WORKFLOW FOR DYNAMIC 
SPECTROSCOPY
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SPECTROSCOPY AT APS
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 X-ray absorption spectroscopy
– HERFD
– Dispersive XANES
– Grazing incidence

 X-ray emission spectroscopy

 X-ray Raman spectroscopy

 Micro spectroscopy, XRF+
– confocal

 In-situ and Operando
– Temperature
– Pressure: DAC
– Heterogeneous Catalysis
– Energy Materials
– IR



THANK-YOU FOR YOUR ATTENTION


