Future Science at Next Generation Korean Synchrotron Workshop – Cheongju, Korea, June 25-27, 2024

Advanced Photon Source Upgrade Commissioning, Initial science, & future outlook

Jonathan Lang
Associate Laboratory Director for S&T; Director X-ray Science Division
Advanced Photon Source
Argonne National Laboratory

UChicago Argonne, LLC

ADVANCED PHOTON SOURCE

70 X-ray beamlines

5,500Unique users in a typical year ~2000 grad students

~1000 postdocs

6,000 Experiments per year

2,000
Publications

CountlessSocietal impacts

APS UPGRADE

ADVANCED PHOTON SOURCE UPGRADE

Replaced the storage ring decreasing electron source size

HIGH BRIGHTNESS: HIGHER RESOLUTION, FASTER DYNAMICS

1 nm Cu (green), Co (blue), Ni (yellow); only photon noise, $(1\mu m)^3$ alumina support visible

APS-U's extreme brightness at high energies enables exploration of individual nanostructures/defects

- Across length scales
- Deeply buried
- In real, complex environments
- Down to few-atom sensitivity

Brightness – increasing the number of photons that hit the target – is key to:

- Visualizing nanoscale structure across macroscopic fields of view
- Electronic/magnetic/chemical contrast

Catalytic nanoparticles clearly visible on alumina surface

COHERENT X-RAY STUDIES

Game-changing leap from average to local time/space information

Incoherent beam carries average information; resolution limited by optics

Scattering of coherent beam carries all microscopic, local information non-periodic arrangements, correlations, dynamics

Spatial resolution limited only by x-ray wavelength, coherent flux

COHERENT DIFFRACTION IMAGING

Forward Scatting Ptychography

A. Tripathi et al., PNAS 108, 13393 (2011)

Eiger "selfie" M. Guizar-Sicairos et al., Optics Express 22,14859 (2014)

3D reconstruction with 10 nm resolution

3D movie of integrated circuit obtained at the APS

Reconstructed local magnetization of GdCo₂ Cylinder with 100nm resolution

C. Donnelly et al., Nature 547, 328 (2017)

APS-U: enough coherent flux to image 1mm³ of a microcircuit at 10 nm 3D resolution.

COHERENT FLUX: NON-EQUILIBRIUM PROCESSES

Ensemble (left) built up by fast particle dynamics (right)

Pre-APS-U: X-ray photon correlation spectroscopy time-averages to ms, faster trajectories are lost

APS-U: Speckle changes as sample evolves, dynamics are captured (simulation of 30x brightness)

Sensitivity ~ (Coherent flux)² APS-U: increases up to 1,000,000x

Allows us to probe:

- Continuous, atomic-scale dynamics down to nanoseconds
- Beyond standard pair correlations
 - Deterministic insight into growth mechanisms and stability of materials, deformation vs. diffusive motion, stick-slip in microfluidic flow

APS-U: Simulated time-time correlation functions during layer-by-layer crystal growth, for different adatom transport regimes

APRIL 17, 2023: END OF USER OPERATIONS

APS-U DARK TIME SCHEDULE

Initially planned to start of storage ring commissioning in early Feb. & beamlines early May '24 Accelerator test and checkout, survey, & storage ring bake out took longer than expected Injected electrons April 13th & first beamline x-ray June 17th

APS-U STORAGE RING REMOVAL

First girder of old APS storage ring coming out of ring in May, 2023

Empty storage ring tunnel in mid-June, 2023

- 1759 Tons of girders and magnets sent to BNL/JLAB (reusing for EIC)
- ~225 Tons of electronics, cabling, support equipment

MODULE INSTALLATION

First pre-assembled module installation – July 12, 2023

INSTALLATION OF LAST COMPONENTS

In December 2023, all 200 modules were in!

Feb. 2024, last piece being installed

Vacuum, test & check out, & survey took slightly longer than expected.

APS-U ACCELERATOR COMMISSIONING

INJECTION SEPTUM AND FIRST KICKER

On-axis injection needed due to small dynamic aperture

Septum 18 kA, 0.5 millisecond pulse

IK1 Kicker 27 kV, 20 nanosecond pulse

Swap out every 20-40s

COMMISSIONING - CURRENT

- Operated in 3 shifts in the first operations run:
 - User mode from 9am to 5pm (50 mA)
 - Machine study 5pm to ~1am
 - Vacuum conditioning at night (higher current)

EMITTANCE MEASUREMENT

Measured at 3-ID-B

Fabricated at Center for Nanoscale Materials (ANL)

Low coupling, 48-bunch mode, 50 mA

UChicago Argonne, LLC

APS-U HORIZONTAL EMITTANCE

APS/APS-U TIMING MODE

- APS operated ~80% in a fill pattern that enabled studies (24 bunch, 153 ns)
- APS-U designed for 48-buch "timing" mode (77 ns intra-bunch separation) as standard operating mode.
- Currently 48-bunch mode limited to <130 mA.
- Upgrading LINAC energy and Booster power supplies to provide needed charge per bunch (ETA one year).

APS UPGRADE PROJECT - BEAMLINES

- New and updated insertion devices for optimum spectral performance.
- 9 new feature beamlines + Long Beamline Building (green)
- 15 enhanced and improved beamlines (red)
- Coupling with high performance computing & AI/ML for real-time data analysis and visualization (off project)

~2 Exaflop (2000 Petaflops)

On-line spring 24'

RETURN BEAMLINES TO OPERATIONS

Time Increment in Weeks

2024

1-ID BCDI at 52 keV of single grain in 3-ID NRIS of Earth core materials polycrystal - S. Hruszkewycz - ANL

at high PT - J. Jackson Cal. Tech.

8-ID XPCS polymer upcycling materials - M. Foster, U. Akron

2025

13-BM Tomogram of Olivine

grain - P. Ruprecht (U. Nevada) 1 µm beam - C. Chang (SBC)

First light June 16, 2024

Working on returning all beamlines back into scientific user program.

59 beamlines taken light as of June 22

Scientific Commissioning -Accepting General Users -

23 beamlines

24 beamlines

Argonne 📤

X-RAY PHOTON CORRELATION SPECTROSCOPY (8-ID)

Coherence optimized beamline for probing dynamics in soft and hard condensed matter

Leads: Suresh Narayanan, Qingteng Zhang & Eric Dufresne

Small Angle Instrument

- Dynamical time scales: <1 microsec 1000 sec with state-of-the-art pixel array detectors
- Coherence at higher energies for penetration into in situ/operando environments: 8-25 keV
- Wide range of sample environments

Wide Angle Instrument

- Spatio-temporal correlations to probe dynamical heterogeneities and intermittent fluctuations in hierarchical and energy materials
- Dynamic heterogeneity and structural transitions
- Structural dynamics in glasses and super-cooled liquids

APS-U EARLY SCIENCE

Electric-field response in relaxor ferroelectric nanodomains

"Flattening" of decorrelation vs E-field frequency, indicative of slowdown of domain response

Enhanced coherent photon flux enabled kHz operando XPCS studies of polar nanodomains in PMN-PT thin film devices, revealing possible latency in domain rotation at high electric field frequencies

CSSI: Coherent Surface Scattering Imaging (9-ID)

Exploring structure and dynamics of low-dimensional mesoscale systems in 3D

Leads: Jin Wang, Zhang Jiang, Joseph Strazalka

- Grazing-incidence scattering with coherent beams
 - Diffraction limited beam size 0.5 μm to 10s μm
- Takes full advantages of the APS-U coherent flux
 - 10¹²⁻¹³ ph/s monochromatic coherent beam, 6 25 keV
- High spatiotemporal resolution
 - In plane 2 5 nm, out of plane < 1 nm, 1 ms

- Long large-diameter detector flight tube (20m, 2.75∅)
 - Long sample-to-detector distance (>23m)
 - Speckle oversampling
 - Large detector lateral motion for Q_x sampling
- Optimized optics to preserve wavefront
- Advanced reconstruction methods (HPC)

APS-U EARLY SCIENCE

Initial speckle measurements from a porous glass

Left: Small-angle transmission speckle pattern from porous glass measured at 11 keV with in-vacuum Eiger detector 21 m from the sample. Speckles are 3-4x bigger than detector pixels ("oversampled").

Right: Detector in vacuum flight path

Oversampling the speckle pattern is key to unlocking new imaging methods for inspecting 3D structures in semiconductor devices or tracking the dynamics of next-generation soft electronic materials.

HEXM: High Energy X-ray Microscopy (20-ID)

Long beamline for 3D materials characterization of engineering materials

Leads: Jon Almer, Sarvjit Shastri, Jung-Sang Park, Peter Kenesei, Andrew Chuang

HEXM provides new information:

 Intra-granular structure (eg, 'see' crack initiation)

 Smaller grained materials (eg, energy storage, additive manufacturing)

Dynamic processes (eg, fatigue)

Process-enhanced properties for airfoils

Smaller grain sizes, stronger materials (AM)

Larger grain sizes, model systems only

Grain Size, µm

Advanced Test Reactor

Nuclear Science User Facilities

Activated Materials Laboratory (AML)

Layout and source properties (40 – 120 keV)

HEXM: High Energy X-ray Microscopy (20-ID)

Recent progress & status: Received first x-rays Dec. 12, 2024, Started science comm.

Expected to be operational June '25

UChicago Argonne, LLC U.S. DEPARTMENT OF ENERGY

XRD from Mg_xMn_{3-x}TeO₆ @ 60 keV – T. Dominy, Clemson Univ.

POLAR: Polarization Modulation Spectroscopy (4-ID)

Exploring electronic and magnetic structure at extreme PT conditions

Leads: Joerg Stempfer, Gilberto Fabbris, Yong Choi, & Daniel Haskel

- Variable polarization (linear, circular)
 - Using phase retarding optics (direct from source ~2 years)
- Large bore superconducting magnet
 - 9-1-1 Tesla, 7 Mbar, 1.5 k
- Ptychography
 - Imaging electronic and magnetic structures with ~50 nm res.

 Developed capabilities at APS to produce toroidal anvils to achieve extremely high pressures in DAC- G. Fabbris & R. Hrubiak

Received first beam Nov. 23rd

POLAR: Polarization Modulation Spectroscopy (4-ID)

Recent Progress and Status: First beam Nov. 23, 2024, Starting science commissioning

9-1-1 Magnet installed in station

9 Tesla; 7 Mbar; 1.5K

2.1 μm sample

First users on diffractometer/imaging instrument

LYNX PTYCHOGRAPHIC IMAGING PROGRAM

Brilliance, High-Energy, External Partnerships

- Non-DOE funded program to demonstrate imaging of integrated circuits using x-ray ptychography
- Commissioned instrument pre-upgrade.
- Built dedicated beamline post-upgrade in un-used industrial MX station.

LYNX Lamino-ptychography imaging instrument

3D Image taken with APS-U

LYNX AT APS-U

16nm FinFET device imaged at 31-ID-E

- 11nm voxel 3D reconstruction produced with APS tools: pty-chi (ptychography) and pyxalign (laminography)
- Credit: Yi Jiang (ptychography), Jeff Klug (measurement), and Hanna Ruth (laminography)

FUTURE APS-U BEAMLINE PROJECTS

- EXCEL prepares additional beamlines to fully leverage high-brightness source
- Two additional beamline proposals in development DMSS (new long beamline) & "EXCEL-II" follow on to EXCEL to upgrade additional APS beamlines.

EXCEL@APS BASE SCOPE

Experimental Capability

Bragg CDI instrument (34-ID-F; ATOMIC)

Nano-Laue Diffraction Instrument (34-ID-E; 3DMN))

Engineering materials platform (20-ID; HEXM)

Rapid *in-situ* characterization (11-ID)

X-ray Raman microscopy (25-ID)

Advanced full field imaging (32-ID)

Broad bandpass microscopy (33-ID; PTYCHO)

High-resolution inelastic scattering (30-ID)

Computational Infrastructure

6 new instruments2 optics upgradesComputation package

34-ID-F Atomic

October 2024

Compute infrastructure

34-ID-E 3DMN

25-ID-D LERIX

FUTURE ACCELERATOR IMPROVEMENTS

Continuing Push boundaries of X-ray brightness at APS

- Developing new PM small-gap and compact undulator technologies
- Developing cryo-free small-gap SCUs with hightemperature superconductors
- Electron optics to reduce beta functions
- Convert to solid state RF

2.4-m-long 27-mm period

SCU cores

Brightness improvement ratio

Solid State RF

BIG-DATA PROBLEM (AND OPPORTUNITY):

The upgraded APS is expected to generate > 100 petabytes of data/year requiring up to 1 exaflop of peak computing power to process and analyze.

Cumulative data generation at APS by year

100 petabytes/year = 150,000 Netflix movies every day

We need to look at every frame of every "movie," analyze it in near-real time, and decide what to do

1 exaflop

= 500,000 servers

This will require ultrafast networks, archival storage, and a robust software infrastructure

Argonne Leadership Computing Facility (ALCF)

Coupling APS instruments with ALCF supercomputers to accelerate scientific discovery

Polaris Supercomputer
44 petaflop/s peak performance

Aurora Supercomputer (early science 2025)
2 exaflop/s peak performance

- APS jobs can launch on-demand within seconds, preempting other running jobs
- Deployed a >1 Tbs network between the APS and the ALCF

HPC REAL TIME DATA PROCESSING

Al-enabled real-time ptychography reconstructions (~ 10 APS

instruments)

Computationally intensive phase retrieval methods are replaced with neural network models (PtychoNN) that learn to invert raw coherent imaging data to sample amplitude and phase in a single shot.

Babu, A.V., Zhou, T., Kandel, S. *et al.* "Deep learning at the edge enables real-time streaming ptychographic imaging", *Nat Commun* **14,** 7059 (2023).

SUMMARY

APS-U successfully commissioned and initial science starting

- Coherence coupled with high-energies providing new possibilities for characterizing materials at new 4th generation synchrotrons.
- APS continuing to improve and exploit these source properties.
- Data sciences will play an increasing role in analysis/interpretation of experiments.

